×

Search

Search
News
Check category
/
/
Electronic/photonic chip sandwich pushes boundaries of computing and data transmission efficiency

Electronic/photonic chip sandwich pushes boundaries of computing and data transmission efficiency

  • Categories:News
  • Time of issue:2022-11-21 10:28
  • Views:

(Summary description)Electronic/photonic chip sandwich pushes boundaries of computing and data transmission efficiency

Electronic/photonic chip sandwich pushes boundaries of computing and data transmission efficiency

(Summary description)Electronic/photonic chip sandwich pushes boundaries of computing and data transmission efficiency

  • Categories:News
  • Time of issue:2022-11-21 10:28
  • Views:
Information

The chip sandwich: an electronics chip (the smaller chip on the top) integrated with a photonics chip, sitting atop a penny for scale. Credit: Arian Hashemi Talkhooncheh

Engineers at Caltech and the University of Southampton in England have collaboratively designed an electronics chip integrated with a photonics chip (which uses light to transfer data)—creating a cohesive final product capable of transmitting information at ultrahigh speed while generating minimal heat.

Though the two-chip sandwich is unlikely to find its way into your laptop, the new design could influence the future of data centers that manage very high volumes of data communication.

"Every time you are on a video call, stream a movie, or play an online video game, you're routing data back and forth through a data center to be processed," says Caltech graduate student Arian Hashemi Talkhooncheh, lead author of a paper describing the two-chip innovation that was published in the IEEE Journal of Solid-State Circuits on November 3.

"There are more than 2,700 data centers in the U.S. and more than 8,000 worldwide, with towers of servers stacked on top of each other to manage the load of thousands of terabytes of data going in and out every second."

Just as your laptop heats up on your lap while you use it, the towers of servers in data centers that keep us all connected also heat up as they work, just at a much greater scale. Some data centers are even built underwater to cool whole facility more easily. The more efficient they can be made, the less heat they will generate, and ultimately, the greater the volume of information that they will be able to manage.

Data processing is done on electronic circuits, while data transmission is most efficiently done using photonics. Achieving ultrahigh speed in each domain is very challenging, but engineering the interface between them is even more difficult.

"There is a continuous demand for increasing the speed of data communication between different chips not only in data centers but also in high-performance computers. As the computing power of the chips scale, the communication speed can become the bottleneck, especially under stringent energy constraints," says Azita Emami, the Andrew and Peggy Cherng Professor of Electrical Engineering and Medical Engineering; executive officer for electrical engineering; and senior author of the paper.

To address this challenge, the Caltech/Southampton team designed both an electronics chip and a photonics chip from the ground up and co-optimized them to work together. The process, from the initial idea to the final test in the lab, took four years to complete, with every design choice impacting both chips.

"We had to optimize the entire system all at the same time, which enabled achieving a superior power efficiency," Hashemi says. "These two chips are literally made for each other, integrated into one another in three dimensions."

The resulting optimized interface between the two chips allows them to transmit 100 gigabits of data per second while producing just 2.4 pico-Joules per transmitted bit. This improves the electro-optical power efficiency of the transmission by a factor of 3.6 compared to the current state-of-the-art. A picojoule is one-trillionth of a Joule, which is defined as the energy released in one second by a current of 1 ampere through a resistance of 1 ohm—or about 0.24 calories.

"As the world becomes more and more connected, and every device generates more data, it is exciting to show that we can achieve such high data rates while burning a fraction of power compared to the traditional techniques," says Emami.

Source:TechXplore

Keyword:

Hot news

07-14
2023
Streamlining Industrial Efficiency: German Type Hose Clamp Automatic Machine Simplifies Production

In a significant development for the manufacturing industry, a new German Type Hose Clamp Automatic Machine is set to revolutionize efficiency and precision in hose clamp production, offering a seamless and streamlined solution for various applications.

07-06
2023
Introducing the High Precision Ceramic Cutting Machine: Revolutionizing Precision Manufacturing

In the realm of precision manufacturing, a groundbreaking innovation has emerged with the introduction of the High Precision Ceramic Cutting Machine. This cutting-edge machine is set to revolutionize the industry by offering unparalleled accuracy, efficiency, and versatility in ceramic material cutting.

06-27
2023
Table Vision Jet Dispensing Machine: Revolutionizing Precision and Efficiency in Manufacturing

The manufacturing industry has long relied on precision and accuracy to produce high-quality products. In recent years, the Table Vision Jet Dispensing Machine has emerged as a game-changer in the field, offering unparalleled precision and efficiency in the dispensing process.

06-12
2023
MLCC Terminology for Destructive Physical Analysis (DPA)

These terms are widely accepted and used in the ceramic capacitor industry.

Online service
Customer service
+8618120750932 +8618120750932
Service time:
8:00 - 24:00
Customer service group:
Customer service
WeChat

Scan the code to contact us

img

Scan the code to contact us

img
wodek
In line with the principle of "customer first, integrity first",
Stick to the equipment that can be used, do the equipment that can be used well
language
中国
韩国
韩国
韩国
韩国
韩国
img

WhatsApp Code

img

Contact Us

Navigation

Hot labels

Get in touch